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Abstract. The unitary irreducible representations of the group SL(2C) are studied by taking 
the coupled states of two angular momenta J ,  and J ,  as basis functions. The unitarity of 
the representations leads to unphysical values of j l  and j ,  such that one of the quantities 
CT = j ,  + j ,  + 1 and j , 2  = j ,  - j ,  is integral or half-integral and the other is purely imaginary 
or real. The formulae derived in this paper exhibit a beautiful symmetry with respect to 
the interchange of these two quantities. The basis functions are expressible in terms of 
terminating hypergeometric series, and, by using the properties of the latter, the matrices 
of the generators and of finite transformations are easily determined. The matrix element 
of the ‘boost operator’ corresponding to a pure Lorentz transformation in the x3  - x4 
plane is found to  take the form of a finite linear combination of 3F2 functions. 

1. Introduction 

The investigation of the unitary representation of noncompact groups has engaged the 
attention of many authors (Gelfand and Naimark 1946, 1947, Gelfand et al 1963. 
Naimark 1964) for a long time and the discovery of the ever increasing number of 
elementary particles in recent years has served to direct attention to noncompact 
groups containing the Lorentz group as a subgroup. On the one hand such groups 
have been employed as the ‘noninvariance’ or ‘dynamical’ groups to generate mass 
spectra with infinitely many levels (Mukunda et a1 1965, Kleinert 1967, Barut er al 
1968) and recently to make predictions regarding other quantities of interest like the 
form factors (Barut and Kleinert 1967, Kuriyan and Sudarshan 1967). On the other 
hand wave equations which are invariant under the groups like the inhomogeneous 
de Sitter group and similar higher-dimensional groups have been systematically 
explored partly with the hope of incorporating internal symmetries alongside the 
space-time symmetry and partly as a way of presenting in unified form the system of 
Lorentz invariant wave equations (Bakri 1969, Fuschich and Krivsky 1968). Another 
problem of physical interest is the group-theoretical aspect of the Regge and Toller 
poles (Toller 1968) which are used in the phenomenological analysis of the scattering 
processes in elementary particle physics. It turns out that these may be identified with 
the poles of the Fourier transforms of certain distributions describing the scattering 
process. The invariance of the scattering amplitude under the inhomogeneous Lorentz 
group plays a role of central importance in all such investigations. 

A good understanding of the properties of the group SL(2C) and its irreducible 
representations is therefore essential to all such investigations. The classical solution 
of this problem is that of Gelfand and Naimark (Naimark 1964) who were able to classify 
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the unitary irreducible representations of SL(2C) in a basis in which the maximal 
compact subgroup SU(2) is reduced. They utilized a particular factorization 

a = kz or a = ku, a E SL(2C) 

and studied the representations in a Hilbert space L2(Z)  of square integrable functions 
defined on the subgroup Z or SU(2). Although the Gelfand-Naimark approach is 
very powerful it is rather intuitive and the physical implications of the results are not 
immediately clear. 

In this paper, however, we adopt a quite different standpoint and investigate the 
irreducible representations by using the usual machinery of spinor calculus which is 
familiar to any physicist. We start from the observation that in the spinor representation 
the operators of the subgroup SU(2) are identical with those of the coupling of two 
angular momenta J, and J , .  The basic state for the coupling of a pair of angular 
momenta which is expressible in terms of a hypergeometric function (Majumdar 1968) 
therefore formally serves as the basis functions for the representations of SL(2C) in 
which the SU(2) subgroup is reduced. The values ofj, and j ,  which are fixed can be 
used to label the representation and are naturally related to the eigenvalues of the 
Casimir operators of the group. The action of the infinitesimal generators on the basic 
states can now be obtained easily using the recurrence relations satisfied by the hyper- 
geometric functions. 

We next proceed to examine the problem of the unitary representations and show 
that the unitarity of the representation leads to complex values of the angular momenta 
j ,  and j ,  such that, either: (a) j , ,  = j ,  - j ,  is integral or half-integral and CT = j ,  + j 2 +  1 
is pure imaginary or real ; or (b)  CT is an integral or half-integral negative number and 
j , ,  is pure imaginary or real. Of course the weights of the SU(2) representations con- 
tained in SL(2C), that is, the j values do remain physical and we recover the principal 
or the complementary series of the representation according as one of the numbers CT 
and j ,  , is pure imaginary or real while the other is an integer or a half-integer. In our 
approach therefore the problem of the unitary representations of SL(2C) leads us to a 
formal analytic continuation of the standard coupling problem to unphysical complex 
values of the angular momenta subject to certain restrictions depending upon the nature 
of the representation. 

The unitary representation a + Vu is now realized in the space of these coupled 
SU(2) basis functions and the problem of finite transformation is solved easily by using 
standard expansions in terms of hypergeometric functions. The matrix element for 
finite transformation can be obtained as a finite linear combination of 3F2 functions. 
From this we recover the elementary spherical function of the representation of the 
principal and complementary series as appropriate special cases. 

2. Infinitesimal operators and the basis functions of the representation 

The group SL(2C) is the group of all 2 x 2 complex matrices with unit determinant : 

a = ;;I), det a = 1. 
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The six infinitesimal operators denoted by J and F generate the Lie algebra of SL(2C) 

where J are the generators of the SU(2) subgroup and F those for pure Lorentz trans- 
formations. These generators can be represented as differential operators in the space 
of the analytic functions f ( t l ,  t2  ; q l ,  q 2 )  where (tl, C2) and ( q l ,  q 2 )  are spinors trans- 
forming according to the fundamental representation (2.1) and its complex conjugate 
respectively. 

For future applications it is convenient to consider, 

J -  = J1- i J ,  = 

F, = F1+iF2 = i <,-+ql- i a;l a 3  

An inspection of the generators given by (2.3) now reveals that if we make a simple 
change of variables 

r'l = i 2 ;  5 2  = -i, (2.5) 

then the operators of the SU(2) subgroup become formally identical with those for 
the coupling of a pair of angular momenta J ,  and J , .  The coupled states 4; may 
therefore serve as the basis functions for the representation of SL(2C) which is explicitly 
reduced with respect to the SU(2) subgroup. 

The nature of the coupling mentioned in the preceding paragraph can be understood 
by considering the linear combinations 

= %Ji-iFi). X i  = % J i  + iFi), 

The two sets of operators X and Y commute with one another and the operators in 
each set satisfy the commutation relations of angular momentum. This is evident from 
equation (2.2) and also from the differential expressions (2.3) and (2.4). In their differ- 
ential forms X i  involve (, only and yi involve q l ,  q 2  only. X and Y,  therefore, 
represent some kind of angular momenta which may be coupled to form the resultant 
J. But, as they are not hermitian, they do not generate SU(2) groups or any noncompact 
versions of SU(2) and their eigenvalues are not required to be non-negative integers or 
half-integers. In the following we shall allow arbitrary values of j, , j, to be determined 
later from the condition of unitarity of the representations. 
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The coupled SU(2) basis function which has been obtained by one of us (Majumdar 
1968) in an earlier paper is expressible in terms of a hypergeometric function (Bailey 
1935, Erdelyi 1953) and can be written as 

x 2Fl( - j -m, j l - j2 - j ;  -2j;  I+- 
t 2 v 2  tlql) 

where 

N j m  = {(j+m)!(j-m)!)-l 'z .  

It is now necessary to determine the action of the operators F on this function. We 
first note that the operators TF,, $F3 are the f l ,  0 components of a vector operator 
A ,  in the SU(2) subspace. We are therefore led to consider the reduced matrix elements 

Rj,,j = ( j ' l l A ~ l l ~ )  

corresponding to j' = j- 1, j and j +  1. It also follows that the matrix elements of F ,  
and F3 will be nonvanishing only if m' = m f  1 and m, respectively. 

The evaluation of the reduced matrix elements is greatly facilitated by use of the 
recurrence relations satisfied by the hypergeometric functions : 

a(a + l)b(b - c) 
c2(2 - 1) F(u, b, C) = xZF(a+2,b+ 1, c+2)  

~ ( 2 b  - C) 

c(c - 2) 
+F(a ,b -  l,c-2)-- xF(a+ 1, b, c) 

dF(a,  b, e )  - a(a + l)b(b - c)(b - c + 1) 
X-- - - x2F(a + 2, b + 1, c + 2) 

ax c(c2- 1)(2b-e) 

b(c - 2) b(c-2) 
2b-c 2b-C 

-~ F(u, b, C) + __ F(a,b- l ,c-2)  

b(b - c)(c- a)@- a +  1) ( c - a)  (2b - C) 
c(c - 2) 

(1 - x)F(a, b, C) = x2F(a, b +  1, e+ 2)+ CZ(C2 - 1) 

x x F ( a - l , b , c ) + F ( a - 2 , b - l , c - 2 )  

(a - c)(b - c) 
= (a- c+ b)F(a, b, c)+ F(u - 1, b, C )  

dF(a,  b, c) 
C 

(1-x) ax 

b(b - c)(a - c)(c - a + 1) 
c2(c + 1) 

+ x F ( a , b + l , c + 2 )  

b(b - c) (c - a) (c - a - 1) 
CZ(C2 - 1) 

(c-a- 1)(2b-c) 
c(c - 2) 

(1 - x)F(a, b, C) = x2F(a + 1, b + 1, c + 2) + 
x xF(a ,  b, c )+F(a-  1, b- 1, c-2) 

dF(a ,  b, c) ab ab(b - e)  (c - a) 
= -F(a, b, e)+ x F ( a + l , b + l , c + 2 ) .  

C c2(c + 1) (1-x) 

These recurrence relations follow after a straightforward calculation from those given 
by ErdClyi et a1 (Erdelyi 1953). 
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The transformations induced on the basis functions by the operators (2.4) follow 
immediately from the above equations when one sets a = - j -m ,  b = j ,  - j , - j ,  
c = - 2j and lead to 

R j -  l , j  = $(2j(2j+ 1)}'!2ccj(cr+j) 

R j ,  l , j  = - 2i{(2j+ 1)(2j+ 2 ) )  ' l2(cr-j-  1 )  

where 

cr = j l + j 2 + l ;  (2.9) 

From these equations it is obvious that by repeated application of F ,  or F ,  to +A i t  is 
possible to get all the states corresponding to j , ,  j,+ 1 , .  . . j ,  j +  1 . . . , where j ,  is the 
lowest weight of the SU(2) representation contained in SL(2C). The ladder must there- 
fore be truncated at the bottom and the coefficients of +;-', that is, R,- l , j o ,  should 
vanish. Thus, 

(2.10a) 

(2.10b) 

(2.10c) 

These solutions actually lead to sets of equivalent representations. A representation 
in the space of the basis functions corresponding to the first solution, as we shall 
see presently, is identical with that of Naimark and covers all possible unitary 
irreducible representations of the group. The second solution on the other hand 
provides us with an altogether new scheme leading to an identical set of representations. 

To find irreducible representations we must find the invariant subspaces of the 
operators J ,  , J ,  and F ,  , F ,  . First it is clear that every invariant subspace is character- 
ized by a unique value of Q and j , ,  . In other words Q and j , ,  are invariants and must be 
fixed in an irreducible representation. It is therefore natural to find that these quantities 
are related to the eigenvalues of the Casimir operators : 

Cl$ i  = { F + F -  + F - F ,  + 2F: - ( J +  J -  + J -  J +  + 2J:)}+; 

= -2(cr2+j:,- I)+; 

Cz+ i  = ( J + F -  + J - F +  + F ,  J -  + F -  J ,  +4J3F3)& 

= --4iajlZ+i.  

Two representations D(j , , ,  cr)  and D ( j 1 2 ,  a ' )  are equivalent provided the Casimir 
operators are the same for both and the spectra of the diagonal generators are the same. 
Thus the representations D( j ,  ,, cr) and D( -jlz, - Q) are equivalent. The Casimir 
operators also remain invariant under the interchange of Q and j l z .  This is, in fact, 
revealed by the second solution which just interchanges the role of cr and j , , .  The 
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basis functions in these two cases are however different. In the first case when j , ,  = j,, 
the parameters of the hypergeometric function in (2 .6)  are negative integers while for 
a = - j ,  the parameter 'b' becomes complex, and these two bases do not seem to be 
connected by any simple transformation. 

3. The unitary representation 

The representation found above can be made unitary simply by introducing appropriate 
normalizers in (2.6). Let 

f A = aj&, (3.1) 

be a basis for the unitary representation. We introduce a suitable inner product in the 
Hilbert space of these vectors such that 

(fi, fi.) = djj<d", . (3.2) 

The unitarity of the representation now requires 

(3.3) 

Setting m' = m and j '  = j and j -  1 respectively we get, 

j,,a = -j;,a* (3.4a) 

(3.4b) 

We first investigate the consequences of the solution (2.10b). When j , ,  = kj ,  the 
equation (3.4~)  reads, 

joa = -jog*. 

This is possible only in the following two cases : (a) jo  arbitrary so that a is pure imaginary ; 
(b) j ,  = 0 so that a is arbitrary. In this case all the three parameters of the hypergeometric 
function are negative integers. 

When a is pure imaginary (say, a = ip/2), the set of all representations corresponding 
to all possible pairs ( j o ,  t ip) is the principal series of the representations. When j ,  = 0 
and a is real we have 

4( j 2  - a2)(4j2 - 1) 
(3.5) 

This expression must be a positive definite quantity for all j = 1 , 2 . .  . . Obviously 
this is possible only if 0 < a2 < 1. However since D(0, a) and D(0, -a) are equivalent 
it is sufficient to consider D(0,  a) with 0 < a < 1 which is the so called complementary 
series of the representations. 

When a = - j o  in accordance with (2.10~) the equation (3 .4~)  again leads to two 
distinct possibilities : (a) j ,  arbitrary so that j , ,  = -sip ; (b) j ,  = 0 so thatj,, is arbitrary. 
In this case, however, the parameter b = jI2-j of the hypergeometric function is a 
complex number. 
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The first possibility (a) again gives rise to the principal series and the second pos- 
sibility (b)  to the complementary series of the representations. For the complementary 
series (T = -j, = 0 and 

j2(4j2- 1) 121 = j z - j f 2  ‘ 

The positive definiteness of this expression again ensures that 0 < jf, < 1. 

and is obtainable from the same by an interchange of (T and j , ,  . 
Either of the above set of representations is of course equivalent to the previous set 

A solution to the recurrence relation (3.4b) can now be easily obtained and is given by, 

This normalization, apart from a trivial phase factor, is equivalent to the one obtained 
by one of us (Majumdar 1968) in a different connection for physical values of j ,  and j , .  

Using (3.6) we now obtain the unitary irreducible representation of the group SL(2C) 
corresponding to a given pair (a,j12) in the space of the basis functionsfi. These are 
given by the formulae, 

(3.7a) 

while the actions of the operators Fi , F ,  are determined by the normalized reduced 
matrix elements 

(3.7b) 

where 

It is interesting to observe that the coefficients C j  are invariant under the interchange of 
(T and j lz .  Therefore the matrix elements of finite transformations should also be 
invariant under this interchange. 

Since the coefficients Cj  # 0 fo r j  > j ,  either for the principal or  the complementary 
series of the representations, the above formulae show that the representation contains 
all the weights j = j,, j, + l,j, + 2 . . . and is therefore infinite dimensional. 

If we further note that the basis functions, as defined by (2.6), (3.1) and (3.6), are 
homogeneous functions of degree 2j, = 0+j12-  1 in (t, ,  t2) and 2j2 = o-jlz- 1 in 
( q l ,  q2) ,  we can easily obtain the operators for the unitary representation. Writing 

(3.8) 
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and using Euler’s theorem we easily obtain 

. a  a 
aZ az F ,  = i--iip2-+ii(c-j12+1) 

F -  = -iz2-+i-+iz(o+j,,-1) aZ az 

F3 = iz-+iZ--i(o-l) 

a a  

a a  
aZ az 

(3.9) 

a a  J -  = z2-+--z(a+j12- 1) 
a Z  az 

a a  
J ,  = -2-+z-+j , , .  

a Z  az 
It should be pointed out that (3.9) represents two sets of operators defined in the spaces 
of two distinct basis functions corresponding to the solutions j12 = +jO and CT = - j o .  

We now proceed to realize the unitary irreducible representations of the group in 
the Hilbert space of these basis functions : 

f m  j - - 4 2  j l 2 + a - l  v 2  -j12+a-l Yi(z, 5)  (3.10) 

where 

y i (z ,z )  = a . N .  I l m  zjz2-m(l+z~)b-j-~ 2F1(-j-m,j12-j; -2j; l+zZ). (3.11) 

For every matrix a E SL(2C) we define a corresponding operator V, in the space of these 
functions such that, 

(3.12) 
with 

2 2 

Using (3.10) and (3.12) we can easily obtain the form taken by the operator V’ for this 
realization of the space. A straightforward calculation leads, without any difficulty, to 

If we accept the solution (2.10b) namely 

1 j - II j12 = T, 0 - 2 4  

where r is a positive or a negative integer the equation (3.13) is identical with the one given 
by Naimark. The solution CT = -jO on the other hand provides us with an alternative 
realization of the representation in a different basis. 
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4. Finite transformation matrix elements 

One advantage in our approach based on the multispinors is that it allows us in a straight- 
forward manner to evaluate the matrix elements of finite transformations. 

It is well known that every matrix a E SL(2C) can be represented in the form 

a = u l m Z  (4.1) 

where u l ,  u2 are unitary unimodular matrices corresponding to space rotation and 

E = (', E!l) (4.2) 

which corresponds to pure Lorentz transformation in the x3-x4 plane. It is therefore 
sufficient to consider the matrix elements 

of the boost operator. 
From (3.13) it follows that 

~ / ; 1 2 . @ y l i ( ~ , z )  = a , ~ ,  (1-[)+(j12-m-s+11 j 1 2 - m  j 
J Jm z S m  

where 

S i  = ( x  + [ -x[y-J- lZF1( - j  - m,j12  - j  : - 2j ; x + [ - xi) 

x = 1+zz, = 1-€4. 

(4.4) 

(4.5) 

For j , ,  = i r ,  lirl = j , ,  the hypergeometric function appearing above will terminate at 
(j-jlz) or ( j + m )  according as j , ,+m 2 0 and this is simply related to the Jacobi 
polynomials to be defined separately in these two domains. The connection with Jacobi 
polynomials can be easily seen by reversing the hypergeometric series. Writing 
a = - j -m,  b = j 1 2 - j ,  c = -2 j ,  we have, for b - a  > 0, 

( - a)  !(b - c) ! 
( - c) !(b - a)  ! ,F , (a ,b ;c ;x )  = ( - l ) b  

and for j lZ = j ,  this is a multiple of the Jacobi polynomial 

with 

n = - b =  j - j o ,  ' ci = b-a = j o + m  > 0 

y = -. 1 p = a+b-c = j,,--m, 
X 

The situation corresponding toj,, = - j ,  can be obtained easily using the permuta- 
tion symmetry of the hypergeometric functions and, as can be readily checked, leads to 
identical results. 
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If we expand the hypergeometric series in (4.5) and note that binomial expansions 
can be defined even for complex powers we have (for j ,  + m > 0), 

j - j o  m ( j+m)!( j - jo)!(2j-n)!r( j -a-n+,?+ 1)(1 -[r-j+n-l 
n = O  1=0 

s i =  1 (-1y 
( j + m - n)  I( j - j o  - n) !(2j) ! n !A ! r( j - 0 - n + 1) 

From the well known formula (Erdtlyi et a1 1953), 

and using (4.6) and (4.7) it is now easy to obtain the expansion, 

x , F l ( - k - m , j o - k ;  -2k;x). (4.10) 

The above equation in conjunction with (4.4), (4.5) and (4.8) now leads to, 

r(j - 0- n + 3. + l ) ( j  + m + 3. - n)  !(2k + 1) ! ( j -  j ,  + 3, - n )  !(1- c)” 
r(j - a - n + l ) ( j  + i, - n + k + 1) ! ( j  + ,? - n - k) !(k -j,)!(k + m) ! 

X 

(4.11) 

This formula is obtained under the restriction j o+m > 0. However, as can be readily 
verified, the same result holds forj,+m < 0, the upper limit of the sum over ‘n’ being 

From this we can easily calculate the boost matrix elements (4.3) which after some 
calculations reduce to a linear combination of 3F2 functions. It is easily seen that the 
formula holds for j ,  , = & j ,  and is given by, 

( j  + m). 

for j ’  2 j .  (4.12) 
j ’ - a + l , j ’ + m +  1, j ’ - j12+1 

; 1 - € - 4  
3F2( j ’ - j+n+l ,2j’+2 

For j ‘  < j an identical formula holds but the range of summation will be different; 
in that case j - j ‘  < n < j-Jl,. It is interesting to note that the equation (4.12) is sym- 
metric in 0 and j , ,  , This ensures that the solutions (2.10b) and (2.10~) lead to identical 
representations. 
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From this we can easily recover the elementary spherical function of the representa- 
tion of the principal and complementary series as appropriate special cases. These are, 
in fact, matrix elements corresponding to the most degenerate case, 

j ' = j = m =  m' = j o  = 0. 

Under this condition the summation drops out and the 3F2 function degenerates into 
the ordinary ,F, function. For the representation of the principal series we have, 

~ : : * ( O P ) ( C )  = -Li , 1 ; 2;  1 -E-") .  2 P  

On using the standard integral representation, 

we immediately get 

2 sinpz 
p sinh2z 

= - - 

where c = e-r.  This is the so called elementary spherical function of the representation 
of the principal series and agrees exactly with that obtained by Naimark in an entirely 
different manner. It is evident from our calculation that the corresponding quantity 
for the complementary series of the representation can be obtained simply by replacing 
P by iP. 

5. Conclusion 

The present analysis shows that the unitary irreducible representations of SL(2C) can 
be realized in terms of an analytic continuation of the coupled SU(2) basis functions 
to unphysical complex domains. Our result is similar to that of Barut and Fronsdal 
(1966) who showed that the unitary representations of SU(1,l) can be realized in a 
space of basis functions which are analytic continuations of the usual SU(2) basis. 
It is interesting to note that the hypergeometric series in the expression (2.6) for the 
basis function retains its terminating character even in the case of SL(2C) group. This 
enables us to directly carry the techniques of the rotation group to the case of SL(2C). 
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Appendix 

The techniques of 6 2 of this paper can be used to study the O(3,l)  symmetry of the 
hydrogen atom. It is well known that the bound states of the nonrelativistic hydrogen 
atom form the bases of irreducible representations of the group O(4) of rotations in four 
dimensions. The larger symmetry is intimately connected with the so called 'accidental 
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degeneracy' of the energy levels in a Coulomb field with respect to the values of I and is 
attributable to the existence of an additional operator 

M =  ( 2 , u ) - ' ( p x ~ - ~ x p ) - Z e ' r / r  (A.1) 

which commutes with the hamiltonian H = ( 2 ~ ) -  ' p 2  - Ze2/r. The irreducible repre- 
sentations of O(4) that occur in the hydrogen problem are, however, of the special type 
Djljz for which j ,  = j ,  = Q(n- 1) (Bander and Itzykson 1966). For a fixed energy, the 
usual angular momentum states Jnlm) and the Stark states lnln2m) obtained by separat- 
ing the wave equation in parabolic coordinates are different realizations of the same 
irreducible representation of O(4). The two sets of states are connected by a linear 
transformation whose coefficients are the SU(2) Clebsch-Gordan coefficients (Park 
1960, Hughes 1967) : 

(A.2) 

In the case of continuum states belonging to the positive spectrum the hermitian 

(+(n - I), $(n - I), 1 ;  +(m+ n, - n,), $(m+ n ,  - n,), m}. 

operators L and = ( P / ~ E ) ' / ~ M  satisfy the commutation relations 

[Li, Lj] = iCijkLk, [Lj,Qj] = iEijk@k, [fii, Qj] = - iCijkLk ('4.3) 

and, hence, build up the Lie algebra of the homogeneous Lorentz group O(3,l ) .  The 
principal quantum number n now takes the purely imaginary value -iN (where 
N = -pZe2/k, k = ip, = ( 2 ~ 1 E ) " ~ ) ,  while j ,  and j ,  again become equal to +(n- 1). 
It is, therefore, expected that the matrix elements between the Stark and the angular 
momentum states of the continuum will be Clebsch-Gordan coefficients of the type 
(A.2) generalized for complex values of j ,  and j,. To test this point we consider the 
particular solution 

rclc = eik',F,(-iN, l,ik(r-z)) (A.4) 
which represents the scattering of an electron by a point charge +Ze at the origin. 
An application of Hughes's (1967) operators for $(Lif iQi) to this function gives 

('4.5) 1 j ,  = j ,  = - m, = m, = ~ ( n -  1). 

Thus, the Stark and the angular momentum states can be represented as 

I j l j 2 , m l m 2 )  = IKn-IHn-I), -Kn-I&n-l)> 

and I d o ) ,  respectively. The complex Clebsch-Gordan coefficients connecting these 
states can be obtained from the general expression (2.6) and are found to have the value 
(Majumdar 1968, equations (4) and (6)) 

{$(n - l), $(n - l), 1 ; -$(n - I), +(n - l), 0 )  

= ( - IT-'- '(I!)- c+(,- ,),+(, - , J ( ~ ) , F , (  - I ,  - I ; - 21 ; 1) 
= (- IT- - lr(n)(21+ i p 2 {  r ( n  - i)r( 1 + I+ n)}  - l I 2 .  

It should, therefore, be possible to expand in a series of the form 

I), = ( -  IT-[ -  lr(n)(21+ i)ll2{r(n - I)r(i + I +  n ) )  - 
I 

X N , , ~ ' ~ - ~ ' ~ , F ~ ( ~ + I - ~ , ~ I + ~ , ~ ) P , ( C O S  0) 
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where p = -2ikr. That is indeed the case, as is seen by introducing appropriate 
normalizers N,,, for the angular momentum states such that the representations of O(3, l )  
become unitary. But for an 1 independent factor which remains undetermined the 
expansion then takes the form given in the standard text books (Messiah 1961). 
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